

Literature Discussions

- Choose a journal paper about the topic of the previous week's lecture period
 - Try to select papers from leading journals in the field (Nature, Nature Materials, Journal of the American Chemical Society, Langmuir, Nano Letters, Soft Matter, Lab on a Chip)
- Prepare a ~5 minute summary of the paper, including
 - Context of work performed in paper with respect to previous work
 - Objective of paper
 - Main results of paper
 - Critique of paper (techniques? Conclusions match results?)
 - Propose next steps what would you recommend doing to further the knowledge gained in this paper?
 - Orally or bring maximum of 5 slides with you

Literature Discussions

- Send the paper to the whole class (and instructor) via e-mail at least 48 hours before the class time
- Everybody will read the paper and prepare notes about the key aspects of the paper/critiques they have
- Discussion on the paper will be led primarily by the student presenting the paper
- Everybody should contribute their thoughts on strengths/weaknesses of the paper presented

Evaluation:

- Presenting student: quality of presentation, leading discussion, scientific accuracy of assessment of paper
- Other students: participation in discussion, evidence of preparation

Abstract – Can you understand the purpose of the paper and the main results of the paper based on the abstract alone?

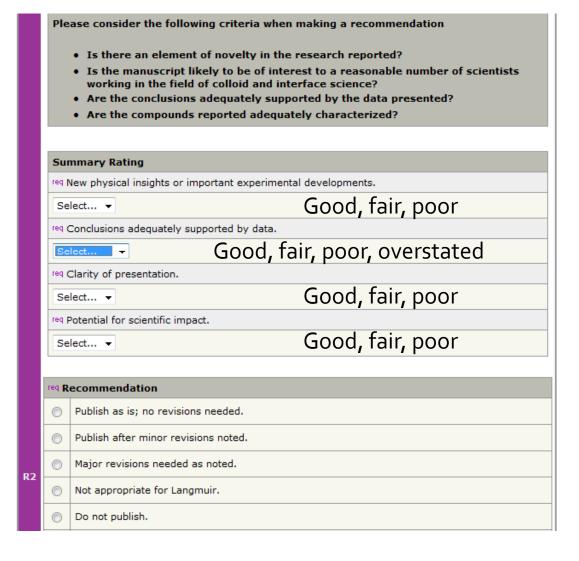
Introduction

- Are appropriate terms defined?
- Do you understand the context of the paper's subject?
 - General background + specific background related to particular materials/methods used
- Have all relevant precedents for research been cited?
 - You need to read (or check) many papers to understand a single paper
- Do you clearly understand the novel, innovative aspect of the science described in the paper?
 - Is there a novel aspect?

Experimental

- Are sufficient details given to reproduce the experiments?
 - Rule of thumb: somebody skilled in the field should be able to directly reproduce your results if desired
- Is the synthesis procedure reasonable?
 - Safety
 - Chemistry correct and verifiable
 - Purification procedures are appropriately chosen
- Are the experiments chosen appropriate for analyzing the particular material? The stated parameter(s) of interest?
- Are appropriate experiments chosen to adequately fulfill the stated objectives of the paper?

Results


- Do the results tell a story? → organization
 - Usually synthesis → physical characterization → application performance
- Has appropriate error analysis been conducted on the data?
 - Appropriate number of replicates done (usually n=4 at least)
 - Proper statistical analysis done to compare values (t-tests, F-tests, etc.)
- Appropriate number of results? (supplementary information)
- Adequate data collected for characterizing the range of compositions, morphologies etc. proposed for use?
- Do the graphs and statistical analysis actually show the trends highlighted?
 - Surprisingly common to see a disconnect between data and claims of what the data represents

Discussion

- Do the results converge on common conclusions?
- Are the trends observed consistent with theory?
- Are explanations of results reasonable?
- Have the results been contextualized relative to prior work?
 - May be partly done in introduction
- Have the results been related to application reasonably?
 - No hyperbole in terms of what the results mean

Conclusion

Conclusions backed by data, not wishful thinking

- American Chemical Society reviewer form
- Treat papers as if it is up to you to decide whether or not they are good enough for publication