Introduction

- The uptake and release of biocides from contact lens (CL) materials has been linked to microbial keratitis and potential cytotoxic responses.1,2
- Myristamidopropyl dimethylamine (MAP-D) is used as an antifungal and antiprotzoal agent in Alcon’s Opti-Free products (Aldox®).3
- Several studies have assessed the uptake and release of MAP-D and other biocide components from CL materials using HPLC techniques.4,5,6
- However, HPLC is time consuming and can have relatively low sensitivity.

Purpose

- The purpose of this study was to assess the uptake and release of radiolabeled MAP-D on soft reusable CL materials over 7 days.

Methods

- Three silicone hydrogel (SH) materials (lotrafilcon A, balafilcon A, senofilcon A) and two conventional hydrogel (CH) materials (omafilcon A, etafilcon A) were tested.
- PBS (ISO 18369-3); radioactive 14C (Moravek Inc., California, USA); MAP-D (5µg/mL) were used.
- Experiment 1 (N = 4 per material) assessed the 24-hr uptake and release kinetics of MAP-D from CLs.
 - incubation period of 8 hours followed by a release period of 24 hours in 2 mL PBS.
 - Aliquots at 1, 0.25, 0.5, 1, 2, 4, 8, 24 hours.
- Experiment 2 (N = 3 per material) assessed the uptake and release of MAP-D from CLs over a 7-day period.
 - CLs incubated in fresh 2 mL MAP-D solution for 8 hours followed by a 16-hour release in PBS.
 - An extraction of MAP-D from the lenses used hexane:isopropanol and chloroform:methanol.
 - Added the samples to scintillation fluor (PerkinElmer, USA) and counted the radioactive signal (Beckman Coulter, CA).
 - Radioactive counts per minute (CPM) was converted to µg based on a standard curve.

Results

Table 1. Summary of results for experiment 1

<table>
<thead>
<tr>
<th>Lens type</th>
<th>Total uptake (mean±SD) (µg)</th>
<th>Total release (mean±SD) (µg)</th>
<th>Extraction amount (mean±SD) (µg)</th>
<th>Percent release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lotrafilcon B</td>
<td>6.32±0.14</td>
<td>0.67±0.04</td>
<td>5.80±0.14</td>
<td>11%</td>
</tr>
<tr>
<td>Balafilcon A</td>
<td>6.13±0.38</td>
<td>0.55±0.03</td>
<td>5.73±0.09</td>
<td>9%</td>
</tr>
<tr>
<td>Senofilcon A</td>
<td>6.45±0.21</td>
<td>0.57±0.02</td>
<td>6.05±0.04</td>
<td>9%</td>
</tr>
<tr>
<td>Etafilcon A</td>
<td>4.00±0.55</td>
<td>1.66±0.11</td>
<td>2.49±0.04</td>
<td>42%</td>
</tr>
<tr>
<td>Omafilcon A</td>
<td>2.45±0.04</td>
<td>1.78±0.03</td>
<td>0.82±0.04</td>
<td>73%</td>
</tr>
</tbody>
</table>

Figure 1. Release kinetics of MAP-D over a 24-hour period (mean±SD).

Table 2. Summary of results for experiment 2

<table>
<thead>
<tr>
<th>Lens type</th>
<th>Total uptake (mean±SD) (µg)</th>
<th>Total release (mean±SD) (µg)</th>
<th>Extraction amount (mean±SD) (µg)</th>
<th>Percent release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lotrafilcon B</td>
<td>44.05±10.63</td>
<td>10.15±0.49</td>
<td>33.90±0.90</td>
<td>25%</td>
</tr>
<tr>
<td>Balafilcon A</td>
<td>43.55±1.08</td>
<td>8.11±0.53</td>
<td>35.44±0.19</td>
<td>19%</td>
</tr>
<tr>
<td>Senofilcon A</td>
<td>42.57±1.20</td>
<td>6.00±0.43</td>
<td>34.57±0.19</td>
<td>19%</td>
</tr>
<tr>
<td>Etafilcon A</td>
<td>26.88±0.57</td>
<td>21.44±0.71</td>
<td>5.44±0.44</td>
<td>20%</td>
</tr>
<tr>
<td>Omafilcon A</td>
<td>18.85±0.42</td>
<td>17.60±0.36</td>
<td>1.25±0.04</td>
<td>93%</td>
</tr>
</tbody>
</table>

Figure 2. Release kinetics of MAP-D over a 24-hour period (mean±SD).

Conclusions

- Radioactive labelling offers a highly sensitive and accurate technique to measure uptake and release of biocides from CL materials.
- Etafilcon A sorbed less MAP-D than the SH materials, but released a greater amount and percentage of MAP-D that was sorbed.
- The surface chemistry of the SH materials may not have a major impact on the sorption of MAP-D.
- The uptake and release kinetics of MAP-D may be driven by the siloxane content within the CL materials.

References

Disclosures

© 2021 CORE – Centre for Ocular Research & Education. University of Waterloo. All rights reserved. All data and images were collected, compiled and are exclusively owned, by CORE. Unauthorized utilization, editing, reproduction or distribution of this poster or any part thereof is strictly prohibited. Email contact for correspondence: a3yee@uwatwaterloo.ca