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2. OBJECTIVES

• Cardiovascular diseases remain a leading cause of death1.

• Cardiac tissue engineering is an alternative approach to the 

repair and regeneration of damaged myocardium2. 

• Degradable polar hydrophobic ionic polyurethane (D-PHI) is an 

innovative biomaterial that has immunomodulatory function 

which minimizes macrophage pro-inflammatory activation3.

• An aligned nanofibrous scaffold (Figure 1) produced by 

electrospinning D-PHI and a degradable linear polycarbonate 

polyurethane (PCNU) enabled effective attachment and healthy 

growth of human pluripotent stem cell derived 

cardiomyocytes (Figure 2).

Central objective: To generate a co-electrospun

gelatin/polyurethane composite nanofibrous scaffold with a 

reduced stiffness (ideal: 20-500 KPa2) and degradation time 

(ideal: 3-6 months5 ), when compared to the D-PHI/PCNU 

scaffold

Research Questions:

• How do different electrospinning parameters (voltage, 

flowrate, solution viscosity, and PCNU molecular weight) 

affect gelatin fibre morphologies?

• To what extent does the incorporation of gelatin impacts the 

mechanical properties and the scaffold degradation rate? 

Figure 6:  Schematic of the co-electrospinning setup.
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• Gelatin/D-PHI/PCNU scaffolds have a higher porosity which 

would enable easy nutrient diffusion and cell infiltration. 

• Incorporation of gelatin reduces the stiffness at least by half in 

the PU fiber direction, and significantly accelerated degradation.

• hiPSC-CM compatibility is currently being investigated.

Figure 1: Nonfibrous D-PHI/PCNU

scaffold.
Figure 2: Immunostaining of hiPSC-CMs 

(sarcomere actinin, connexin, nucleus) 

on the D-PHI/PCNU scaffold.
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• However, such scaffolds take too long to degrade (>3 months) 

and are too stiff (~55 MPa) for cardiac tissue engineering4. 
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Figure Voltage 

(kV)

Viscosity (s) PCNU molecular weight 

(Dalton)

Fibre Diameter 

(μm) (n=60) 

(mean ± SD)

A 18 60 90,000 3.10 ± 2.15

B 18 60 140,000 2.20 ± 0.80

C 36 45 140,000 0.89 ± 0.52

D 36 25 140,000 0.68 ± 0.56

BA

Figure 8A & 8B: SEM images of single-spun D-PHI/PCNU (left) and co-spun 

gelatin/D-PHI/PCNU scaffold (right). Fibres are defined below in Table 2. 

Figure Fibre Diameter (μm) 

(n=60) (mean ± SD)

Porosity (%) (n=3)

(mean ± SD)

A: 50:50 D-PHI/PCNU 

SINGLE-spun

0.54 ± 0.45 13.54 ± 1.30 *

B: D-PHI/PCNU Gelatin/PCNU

CO-spun (20% D-PHI + 25% 

PCNU + 55% gelatin)

0.78 ± 0.70 21.49 ± 5.51 *

Figure 7A-7D:  SEM images of the single-spun 80:20 gelatin/PCNU 

scaffold with parameters listed in Table 1 (see the third panel).

Figure 10: Collagenase (0.01 unit/mL) 

accelerated degradation of 55:20:25 Gelatin/D-

PHI/PCNU co-spun scaffolds(n=6). Error bars 

represent standard deviations.  

Figure 11: hiPSC-CMs viability (n=1) 

(>96%) on Matrigel coated 55:20:25

gelatin/D-PHI/PCNU scaffolds.
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Table 1: Electrospinning parameters and fibre diameter of fibres in Figure 7.

Table 2: Fibre diameter and porosity of fibres in Figure 8.
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Figure 9: Biaxial mechanical properties (n=3) of 50:50 D-PHI/PCNU single-spun fibres and 

55:20:25 Gelatin/D-PHI/PCNU co-spun fibres. Error bars represent standard deviations. 

Figure 3: 
Structure 
of D-PHI.

Figure 4: 
Structure 
of PCNU.

Figure 5: 
Structure 
of gelatin6.
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