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Innovative biomaterial that has immunomodulatory function Divinyl oligomer )I Methy| Methacrylic Table 1: Electrospinning parameters and fibre diameter of fibres in Figure 7.
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» An aligned nanofibrous scaffold (Figure 1) produced by PCNU
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cardiomyocytes (Figure 2). A° " N Figure 8A & 8B: SEM images of single-spun D-PHI/PCNU (left) and co-spun
1,6-hexane diisocyanate 1,4-butanediol gelatin/D-PHI/PCNU scaffold (right). Fibres are defined below in Table 2.
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and are too stiff (~55 MPa) for cardiac tissue engineering?. Figure 6: Schematic of the co-electrospinning setup. 0 .y;ié‘u.’-‘;:e:;!‘-:wz_;w"
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2. OBJ ECTIVES » S R UTS &' SON \ Figure 9: Biaxial mechggﬂl:rél properties (n=3) of 50:50 D-PHI/PCNU single-spun fibres and
AN Pi | / 1IN \¢ 55:20:25 Gelatin/D-PHI/PCNU co-spun fibres. Error bars represent standard deviations.
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Research Questions: o 1 2 _ 3 4 5 6
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 How do different electrospinning parameters (voltage, Figure 10: Collagenase (0.01 unit/mL) Ciaure 11- hiPSC-CMs viabilit (n=1)
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; ; P represent standard deviations. gelatin/D-PHI/PCNU scaffolds.
affect gelatin fibre morphologies”
* To what extent does the incorporation of gelatin impacts the ARSI NNRAN IO~ SSSESSasSSe s 6. CONCLUSIONS AND FUTURE WORK
mechanical properties and the scaffold degradation rate? Figure 7A—7DZ SEM image_s of the single-spun 80:20_gelatin/PCNU » Gelatin/D-PHI/PCNU scaffolds have a higher porosity which
scaffold with parameters listed in Table 1 (see the third panel). would enable easy nutrient diffusion and cell infiltration.
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