
PARTIAL OR COMPLETE ENZYMATIC DIGESTION OF GLYCOSAMINOGLYCANS DOES NOTAFFECT PORCINE
AORTICWALL PROPERTIES MEASURED FROMBIAXIAL TESTING

Ruptured aortic aneurysms are life threatening pathologies with mortality
rates exceeding 90%1. Current interventions for aortic aneurysm include
monitoring yearly expansion rates and surgical treatment recommended
with aneurysm diameter >5.5 cm2; these approaches are not considered
adequate as many ruptures occur suddenly and below clinical guidelines
for treatment. Understanding the contributions of each component of the
arterial wall to its mechanical response will aid in enhancing models for
in-vivo tissue responses, to help better predict arterial wall behaviour,
especially of pathological tissue.

INTRODUCTION

Location Average Thickness [mm]

0 hours 4 hours 48 hours

ASC 2.11 ±0.22 2.21 ±0.24 1.86 ±0.23

ARC 1.81 ±0.29 1.71 ±0.18 1.81 ±0.18

THO 1.32 ±0.22 1.37 ±0.18 1.25 ±0.24

Soft tissues are fiber-reinforced composites, which display nonlinear,
anisotropic mechanical response3,4. The structural influence and
contribution of glycosaminoglycans (GAGs) is still unclear. GAGs are
highly negatively charged long chains composed of unbranched repeating
disaccharide units, found in the aortic extracellular matrix (ECM). These
macromolecules are essential in influencing material viscoelasticity,
serving to resist deformation and compression, ECM hydration, and
providing residual stress in the unloaded state5,6, although their low
content in aortic tissue (2-5% by dry weight7).

BACKGROUND INFORMATION

GAG content in the porcine aorta does not affect tissue mechanical
properties measured from biaxial testing.

HYPOTHESIS

• 49.1 ±7.0% and 83.8 ±5.2% of GAGs were removed from the arterial
tissue after 4- and 48-hours incubation.

• Tissue morphometry, thickness and area, remained unchanged
following incubation (Table 1).

• Tissue thickness significantly decreased moving away from the heart,
in all treatment groups (Table 1)

• Earlier transition to the stiffer portion of the stress-strain curve for
treated samples in the circumferential direction (Fig. 1b, c, d)

• No statistical difference between S and E of untreated, partially
digested and fully digested tissue, or in level of anisotropy (Fig. 2)

RESULTS

Table 1 – Average thickness of the Asc., Arc., and Tho. at varying incubation times
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MATERIALS & METHODS

Sample thickness was evaluated before and after 0-, 4-, and
48-hour incubation, prior to mechanical testing.

Strain (E) and stiffness (S) were computed from material
models, Fung (F) and Guccione (G), and evaluated under
arbitrary membrane tensions of 60 and 120 N/m (Fig. 1a).

The aorta was divided into 3 major regions: ascending (Asc.),
arch (Arc.), and thoracic descending (Tho.)

Figure 1 – (a) schematic stress-strain curve evaluated under membrane tensions of 60 and 120 N/m.
Circumferential and longitudinal directions denoted by fiber (FD) and cross-fiber direction (XD),
respectively; (b) Summary of average experimental equibiaxial results for the Asc.; (c) Arc; (d) Tho.
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Figure 2 – Figures produced using the Fung model, comparing mechanical response at varying
incubation times, under 60 N/m membrane tension a) circumferential strain (b) longitudinal strain (c)
circumferential stiffness (d) longitudinal stiffness

The findings of the present study suggest that partial and complete
enzymatic degradation of GAGs from porcine aortic tissue do not affect
tissue mechanical properties, measured from biaxial testing, and do not
influence morphometric parameters, including thickness and area. These
findings will contribute to the fundamental understanding of aortic tissue
mechanics and help determine the biomechanical relationship between
individual arterial wall constituents and their response.
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