Impact of Nucleic Acid Backbone Modifications on the Morphology of Lipid Nanoparticles

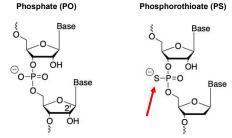
NANOVATION

Kevin An^{1,2}, Daniel Kurek¹, Yao Zhang², Pieter R. Cullis^{1,2}, and Jayesh A. Kulkarni^{1,2} ¹NanoVation Therapeutics, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3

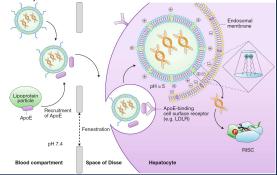
²Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 123

The Problem

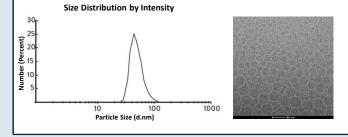
Barriers to Gene Therapy


 Nucleic acid therapeutics are subject to nuclease degradation and an inability to cross cell membranes efficiently due to their inherent negative charge

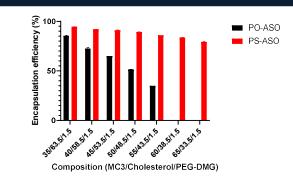
The Solution


Improvements to the Construct

Phosphorothioate backbone modifications in the nucleic acid sequence exert protection against nucleases


Improvements to Delivery

 Lipid nanoparticles enable nucleic acid encapsulation and intracellular delivery through ApoE-dependent receptor-mediated endocytosis without attendant toxicities



Lipid Nanoparticle Formulation Nucleic acid in pH 4 Image: Structural Determination

 Particle size characterized by dynamic light scattering and morphology by cryogenic transmission electron microscopy



Phosphorothioate Modifications Enhance Entrapment

Phosphorothioate Modifications Alter Morphology

- Unmodified antisense oligonucleotides (PO-ASO) display uniformly dense cores up to 20 mol% helper lipid
- Fully phosphorothioate modified antisense oligonucleotides (fullPS-ASO) display striated internal structures across all compositions
- Antisense oligonucleotides with alternating phosphorothioate modifications (mixPS-ASO) display an in-between profile

Conclusions and Future Directions

- Phosphorothioate modifications impact LNP morphology substantially due to stronger interactions with ionizable amino lipids, resulting in enhanced entrapment
- Assessing the importance of modification localization as well as the minimum number of modifications required for maximal entrapment will further explain said phenomenon

