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Introduction

Human skin has a complex array of functions and abilities such as preventing infection,
providing sensation, and healing upon physical injury [1]. Tissue-engineered skin models have
historically been used as skin grafts or as in vitro models for studying drug efficacy and toxicity,
cosmetics, or wound healing [2, 3]. However, many functions of skin are dependant on
structures with complex three-dimensional (3D) geometries such as vasculature, sweat glands,
nerves, and pilosebaceous units which are challenging to replicate in tissue-engineered skin
models.

Digital light processing (DLP) bioprinting can be used to form detailed three-dimensional (3D)
geometries from photo-crosslinkable hydrogels. Gelatin methacryloyl (GelMA) is a
biocompatible photo-crosslinkable hydrogels derived from collagen which is the majority
component of the skin’s extracellular matrix (ECM). Here, we introduce the potential of using
DLP bioprinting to fabricate tissue-engineered skin from a GelMA hydrogel (Fig. 1).
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DLP Bioprinting for Skin Tissue Engineering
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Figure 1: Schematic of the digital light processing (DLP) bioprinting workflow. (A) human primary
fibroblasts and GelMA are combined and photo-crosslinked in the geometry of the input CAD file (B) by
the DLP bioprinter (Lumen-X, CELLINK). HaCaT cells are added to the upper surface and cultured at an

air-liquid-interface to form a stratified epidermis (C), indicating the tissue-engineered skin is mature.
Scale bar = 100 um.

To characterize the printability of small features, vertical pores with diameters of 1000, 750,
500, and 250 um were bioprinted in 5, 7.5, and 10% GelMA (Fig. 2). All pore sizes formed in 10%
GelMA while the 5% GelMA mesh had numerous defects and neither the 250 or 500um pores
remained hollow. All pores sizes except for 250 um formed successfully in the 7.5% GelMA with
few defects.
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Figure 2. Printability of vertical pores in (A) 5% GelMA, (B) 7.5% GelMA and (C) 10% GelMA with DLP
bioprinting. The pores have diameters of 1000 um (left) , 750 um (middle), 500 um (top right), and
250 um (bottom right). Scale bars = 10 mm.

Optimization of the Dermal Hydrogel
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Figure 3: Optimization of DLP bioprinted GelMA hydrogel constructs to mimic the human dermis.
(A) Live (green) and dead (red) stain shows dermal fibroblast viability and morphology in 5, 7.5,
and 10% GelMA. Scale bars = 500 um at low magnification and 100 um in the inset images. (B)
Quantification of the toxicity of the photo-initiator (LAP) and photo-blocking dye (tartrazine)
required for DLP bioprinting. (C) Analysis of the metabolic activity of fibroblasts in 5, 7.5, and 10%
GelMA over 5 days of culture. (D) Comparison of the cell density in 5 um cross-sections of tissue-
engineered skin with 0.5x10° cells/ml vs. human reticular dermis. Scale bars = 50 um (E) Confocal
images of cell distribution on the lower surface (i) and interior (ii) of fibroblast-laden 7.5% GelMA
constructs. Scale bars = 100 um.

Primary human dermal fibroblasts DLP bioprinted in 5, 7.5, and 10% GelMA showed high
viabilities 1 and 5 days after printing (Fig3A). The cytotoxicity influence of LAP and
tartrazine at 0.3% (w/v) and 2.5mM respectively on fibroblasts after 2 hours was
negligible (Fig 3B). Fibroblast proliferation in all three GeIMA concentrations was
quantified over 5 days of culture (Fig. 3C), showing exponential cell growth in all
conditions. Both the cell-laden hydrogel and human reticular dermis were sliced into 5
um cross-sections and stained with DAPI to show cell nuclei (Fig. 3D). The number cells in
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After 5 days, confocal images show spread fibroblasts on the bottom surface and interior

of 7.5% GelMA constructs.

each are similar, verifying the relevance of the chosen fibroblast density of 0.5 x 106/ml./
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Figure 4: Suitability of DLP bioprinted GelMA constructs as a substrate for tissue-engineered
epidermis. (A) HaCaT cell attachment to 5, 7.5, and 10% GelMA after 1 and 2 seedings of 0.5 x 10°

\cells/cmz. (B) Quantification of HaCaT attachment. (C) Live and dead stain of the confluent Hacy

layer after 2 seedings. Scale bars = 500 um at low magnification and 100 um in inset images.
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HaCaT attachment to 5, 7.5, and 10% GelMA constructs was characterized and quantified (Fig.
4A,B), showing that a confluent layer was formed on 7.5% and 10% GelMA after 2 seedings on
consecutive days. A live and dead stain shows that the cells in the epidermal layer are almost
exclusively alive (Fig. 4C). 7.5% GelMA was chosen for further experiments due to its sufficient
printability, high fibroblast viability and proliferation, and suitability to form a confluent HaCaT
layer after 2 seedings.
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Figure 5: Maturation of the tissue-engineered (TE) epidermis cultured for weeks at the air-liquid-
interface (ALI) with and without dermal fibroblasts in the DLP bioprinted constructs. Identical
staining of human skin shown for comparison. (A) H&E histological stain of the TE epidermis in the
absence (1, 2, and 4 weeks of culture) and presence (1 week of culture) of fibroblasts. (B)
Immunohistochemistry (IHC) staining for filaggrin in constructs without (1, 2, and 4 weeks) and
with fibroblasts (1 week of culture). (C) IHC staining for laminin-I in constructs without (1, 2, and 4
weeks of culture) and with fibroblasts (1 week of culture). All scale bars = 50 um

Tissue-engineered skin constructs were then lifted to the ALl on Transwell inserts and
cultured for weeks to allow for stratification of the epidermal layer. H&E stains show that
after 1 week, the constructs with fibroblasts have the most organized and stratified
epidermal morphology (Fig. 5A). Immunohistochemistry (IHC) was used to compare the
expression of filaggrin and laminin-I in the tissue-engineered skin vs native human skin (Fig. 5
B,C). Tissue-engineered skin with fibroblasts after 1 week of ALl culture shows significant
filaggrin expression in its apical layers, however this is much sparser than what is seen in
human skin.
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Conclusion

DLP bioprinting is a promising biofabrication technique to produce tissue-engineered skin and
its complex structures in vitro. In this work, we chose a suitable hydrogel concentration of 7.5%
GelMA based on printability and dermal fibroblast proliferation and viability. After verifying

that an confluent HaCaT layer was formed after 2 cell seedings, we cultured DLP bioprinted
tissue-engineered skin at the ALl for up to 4 weeks. Filaggrin expression in the condition with
fibroblasts was seen after 1 week and it is expected that in our future experiments with longer
ALl culture times that the epidermis will further differentiate. Y
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