Investigation on the physical-chemical and biological properties of Ti surfaces treated by AC Plasma Electrolytic Oxidation (PEO)

<u>S. Martinelli^{1,2}, M. Pavarini¹, A. Steeves², E. I. Alarcon³, R. Chiesa¹, F. Variola²</u> ¹ Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Italy ² Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada ³ Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Canada

INTRODUCTION

- Plasma Electrolytic Oxidation (PEO) → simple and cost e electrochemical surface modification technique to produce th microporous coatings on Ti and its alloys^[1].
- Localized surface melting → easily embed doping particles or the coatings^[2] to provide antibacterial and pro-osteogenic prope
- Doping agents:

- provide contact kil can Copper antimicrobial properties^[3,4].
- Zinc can promote bone mineralizat and osteoblast differentiation^[5].

AC 30-2

ELECTROLYTE AND PROCESS

AC 10-30

100 Hz

PEO

- Grade 2 cp-Ti discs (Ø 12mm, th. 0.67mm).
- Undoped and co-doped electrolytic baths.

MORPHOLOGICAL CHARACTE

Frequency

Solution

	AIM OF THE WORK					
effective nick and ions in erties. Illing	 Exploit the PEO technique to provide antibacterial and pro-osteogenic properties to Ti surfaces for implantable devices. Investigation of the effect of alternate current on the surface in PEO, to evaluate its potential advantages over unipolar conditions. 				 Addition of solution PE agent for cop Main proble Dopar deple bath v 	
					2.0 -	
CONDITIONS						
Electrolyte		PEO ^[6]	PEOCuZn ^[6]		e ^{1.5} − Raleigh 2 Peak	
		0.1 M	0.1 M			
NaOH		0.1 M	0.1 M		man i	
Na ₂ SiO ₃		0.02 M	0.02 M		0.5 −	
Cu(CH ₃ COO) ₂		-	2 mM		0.0 -	
Zn(CH ₃ COO) ₂		-	0.01 M			
DC AC		30-2	AC 10-30			
300 V 30		00 V	300 V		0.8	
7 min 7		min	7 min		0.6 – 92	
50% 5		50%	50%		- 4.0 pai	
-		2%	30%		0.2	
- 3		80%	10%		0.0	
100 Hz 10		DO HZ	100 Hz		3500 3000	
PEUC		JCuZn	PEUCUZN			
RISATIO	N (SEM)					
Homogeneous microporous morphology.PORE DIMENSIONPOROSITYControl845 ± 257 nm8%DC948 ± 204 nm9%DC948 ± 204 nm9%					 Embedding of with AC in PE Dopants are antibacteria Embedding of position of t The effect of the introduction 	
AC 30-	·2 946 ±	1// nm	11%			
AC 10	3U 982 ±	TAA NW	12%			

[1] Yerokhin et al., Surface and Coatings Technology (1999) [2] Lu et al., Surface and Coatings Technology (2016) [3] Quaranta et al., Applied and Environmental Microbiology (2011)

PHYSICOCHEMICAL CHARACTERISATION (Raman + FT-IR)

sara.martinelli@polimi.it

[4] Hong et al., Applied and Environmental Microbiology (2012) [5] Gao et al., Journal of Alloys and Compounds (2017) [6] Pavarini et al., Appl Surf Sci (2021)

The treated surface has both Anatase and Rutile domains. The Rutile domain's dimension changes in between the

ONGOING & FUTURE WORK

HMSCs adhesion, spreading osteogenic and differentiation by confocal microscopy and gene

Bacterial colonization and biofilm formation on the doped PEO surfaces with *Pseudomonas*.

Stabilisation of EDTA in PEO process changing the