Immune Response to Vascularizing Subcutaneous Engineered Islet Grafts

SEFTON LAB sue engineering & regenerative biomaterials

Background

Subcutaneous Space

- Promising alternative islet transplant site to portal vein
- Requires vascularization for utility

Methacrylic acid (MAA) Based Materials

- Semi-intepenetrating polymer network
- 8 arm poly(ethylene glycol) (PEG), 10 kDa and poly(MAA) combined to form a hydrogel with a thiol cross-linker via Michael type addition
- Induce vascularization in the subcutaneous space

Allogeneic Transplantation

- Rodent islets injected in an MAA-poly(ethylene glycol) (MAA-PEG) hydrogel returned diabetic SCID/bg mice to normoglycemia
- A properly tuned peri-operative inflammation suppression protocol is required for immunocompetent mice

Aim

Understand the immune environment of subcutaneously implanted, vascularizing islet allografts and evaluate the efficacy of a short-term immune mitigation strategy by comparison to an immune compromised mouse model.

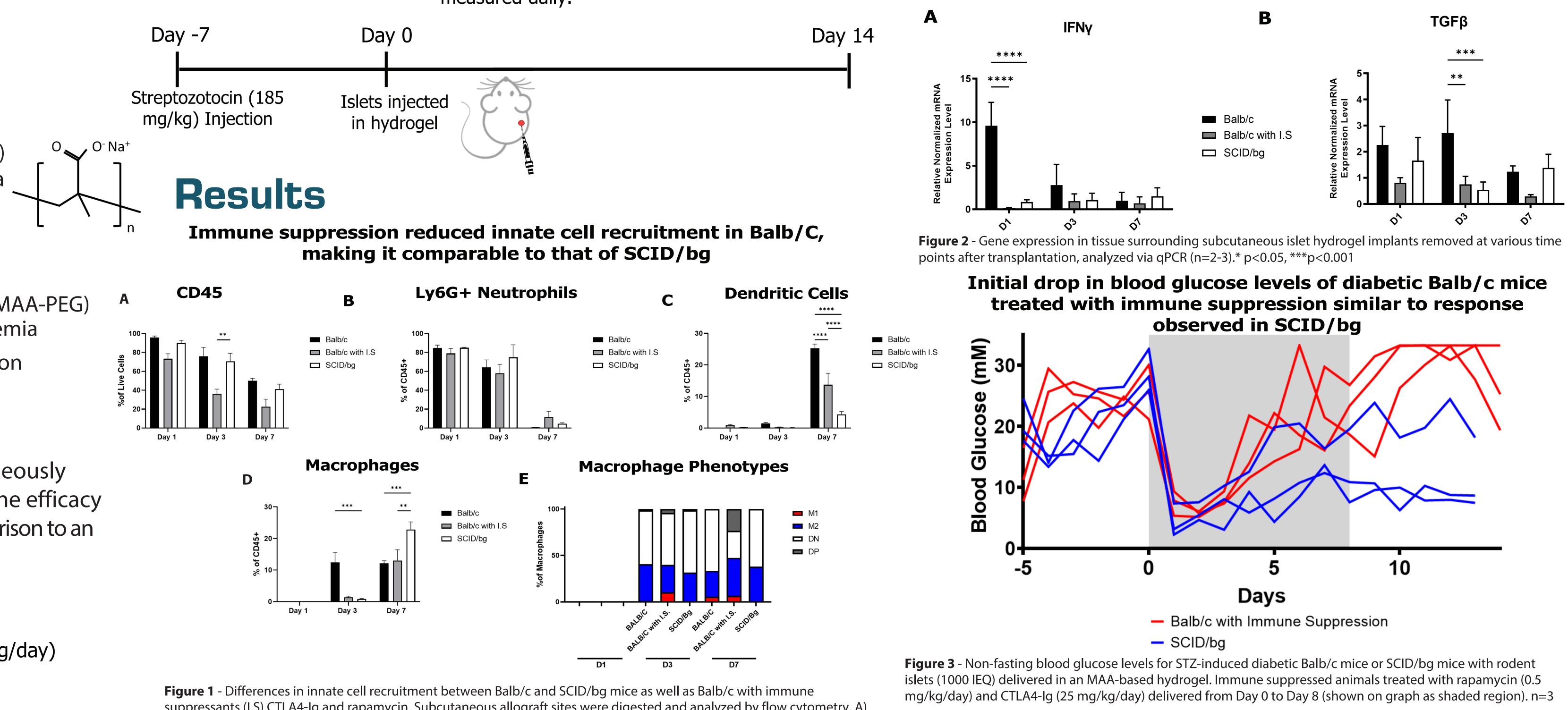
Methods

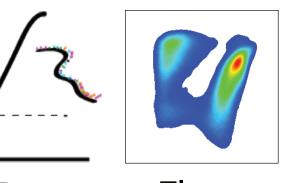
Immune Suppression Regimen

i.p. Rapamycin (0.5 mg/kg/day), i.p CTLA4-Ig (25 mg/kg/day) (Days 0,1,2,4,6)

Non Diabetic Studies: 200 mouse islet equivalents (IEQ) were isolated from C57BI/6J mice and injected in 100 µl of MAA-PEG hydrogel into Balb/c or SCID/bg mice. Islet grafts were removed on days 1, 3, and 7 for analysis of the immune environment by flow cytometry or qPCR.

Da	y 0		
Islets ir	njected		
in hydrogel			


Day 1, 3, 7


PCR

Krystal Ortaleza¹*, Sean M. Kinney^{1,2}*, So-Yoon Won¹*, Michael V. Sefton^{1,2}

¹ Institute of Biomedical Engineering ² Department of Chemical Engineering and Applied Chemistry

Diabetic Studies: 1000 mouse islet equivalents (IEQ) were isolated from C57BI/6J mice and injected in 200 µI of MAA-PEG hydrogel into streptozotocin induced diabetic Balb/c mice. Non-fasting blood glucose was measured daily.

Flow Cytometry suppressants (I.S) CTLA4-Ig and rapamycin. Subcutaneous allograft sites were digested and analyzed by flow cytometry. A) CD45+ immune cells (n=5-6) are further gated into B) Ly6G+ neutrophils C) CD11b+CD11c+Ly6G-Ly6C- dendritic cells D) Ly6G- F480+ CD11b+ macrophages and E) their phenotypes (DP: CD206+MHCII+, DN: CD206-MHCII-, M2: CD206+MHCII-M1: CD206-MHCII+), Data shown as mean ± SEM. SCID/bg Day 1 (n=4), SCID/bg Day 3 and 7 (n=5), Balb/c (n=3), Balb/c with I.S. (n=3)

Results Cont'd

Conclusion

hyperglycemia in diabetic animals.

Institute of Biomedical Engineering UNIVERSITY OF TORONTO

Immune suppression decreased expression of common inflammatory markers at early times

Immune suppression reduced innate immune cell recruitment in Balb/c mice but was insufficient to induce sustained reversal of

