

Abstract

This research aimed to develop a smart coating based on biopolymer composite. A copolymer carboxymethyl cellulose/polyvinyl alcohol crosslinked with glutaraldehyde (CMC/PVA) was reinforced with flower-liked zinc oxide (F-ZnO) at 0.1-0.7 wt%. The CMC/PVA/F-ZnO was coated on a glass substrate by spray and then treated with trichloro octadecylsilane (OTS). The coated glass with CMC/PVA/ 0.5 wt% F-ZnO showed a superhydrophobic surface with water contact angle of 153°. The obtained superhydrophobic surface also had an excellent antiadhesive bacteria performance up to 99.9% and self-healing performance in humid environments about 72.5%. Interestingly, the superhydrophobic coating can be removed from the substrate by immersing the coating in water for 1 h. Consequently, the substrate can be reused when it is no longer required for coating.

Introduction

Preparation of rewritable superhydrophobic based biopolymer composite for smart coating integrated with self-healing and anti-fouling

Artjima Ounkaew, Pornnapa Kasemsiri*, Ravin Narain

> Antiadhesive activity of superhydrophobic bio composite The antiadhesive efficiency after the bacterial incubation 24 hr on the sample surface. The CMC/PVA/F-ZnO-0.5 showed the highest antiadhesive efficiency is 99.9% which is consistent with the surface hydrophobicity.

Self-healing ability of superhydrophobic

Scratch

Self-healing

In summary, we prepared a rewritable and eco-The CMC/PVA without friendly superhydrophobic coating by a simple spray-ZnO incorporated and coating method. A suitable 0.5% ZnO content in 0.1-0.7% showed ZnO CMC/PVA polymer matric was showed the superhydrophobic surface up to 153.50, excellent ability in self-healing antibacterial adhesion resulting in efficiently impede range of 47.07-72.47% the adhesion of E. coli and S. aureus by over 99.9%, and self-healing ability up to 72.47% under humidity environment were successfully. As a result, rewritable environmentally friendly superhydrophobic and coatings should have a lot of applications in many fields

Rewritable properties of superhydrophobic The coated glass with 0-0.7 %wt of ZnO showed rewritability superhydrophobic coating that allows the substrate to be reused.

Methods
The width and length of scratch was
measured using Olympus DP73
microscope digital camera
The bacterial colonies

Water contact angle

A surface with 90–150° WCA is called hydrophobic, whereas a > 150° WCA implies a superhydrophobic

The coated glass containing 0–0.7 wt% ZnO ranged from 129.4 to 123.4°

Conclusion